FancyMancy
Well-known member
- Joined
- Sep 20, 2017
- Messages
- 7,032
Genetic changes that crop up in an organism's DNA may not be completely random, new research suggests. That would upend one of the key assumptions of the theory of evolution.
© Provided by Live Science An artist's interpretation of a double-stranded helix of DNA.
Researchers studying the genetic mutations in a common roadside weed, thale cress (Arabidopsis thaliana), have discovered that the plant can shield the most "essential" genes in its DNA from the changes, while leaving other sections of its genome to build up more alterations.
"I was totally surprised by the non-random mutations we discovered," lead author Grey Monroe, a plant scientist at the University of California, Davis, told Live Science. "Ever since high-school biology, I have been told that mutations are random."
Random mutations are an important part of the theory of evolution by natural selection, in which mutations give rise to adaptations that are passed on to offspring and alter their chances of survival. Scientists have assumed that these mutations were random and that the first step in evolution by natural selection was, therefore, also random. But this may not be entirely true, the new study suggests.
"The idea of random mutation has been around for over a hundred years in biology and is something you hear so often as a student that it is easy to take it for granted," Monroe said. "Even as a practicing geneticist and evolutionary biologist, I had never seriously questioned the idea."
The new finding does not disprove or discredit the theory of evolution, and the researchers said randomness still plays a big role in mutations. But the study does show that these genetic alterations are more complex than scientists previously believed.
...
https://archive.is/aafj7
© Provided by Live Science An artist's interpretation of a double-stranded helix of DNA.
Researchers studying the genetic mutations in a common roadside weed, thale cress (Arabidopsis thaliana), have discovered that the plant can shield the most "essential" genes in its DNA from the changes, while leaving other sections of its genome to build up more alterations.
"I was totally surprised by the non-random mutations we discovered," lead author Grey Monroe, a plant scientist at the University of California, Davis, told Live Science. "Ever since high-school biology, I have been told that mutations are random."
Random mutations are an important part of the theory of evolution by natural selection, in which mutations give rise to adaptations that are passed on to offspring and alter their chances of survival. Scientists have assumed that these mutations were random and that the first step in evolution by natural selection was, therefore, also random. But this may not be entirely true, the new study suggests.
"The idea of random mutation has been around for over a hundred years in biology and is something you hear so often as a student that it is easy to take it for granted," Monroe said. "Even as a practicing geneticist and evolutionary biologist, I had never seriously questioned the idea."
The new finding does not disprove or discredit the theory of evolution, and the researchers said randomness still plays a big role in mutations. But the study does show that these genetic alterations are more complex than scientists previously believed.
...
https://archive.is/aafj7